Skip to contents

predict.rd makes predictions of means and standard deviations of RDs at different cutoffs.

Usage

# S3 method for rd
predict(object, gran = 50, ...)

Arguments

object

An rd object, typically the result of rd_est.

gran

A non-negative integer specifying the granularity of the data points (i.e. the desired number of predicted points). The default is 50.

...

Additional arguments passed to predict.

Examples

set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x >= 0) + rnorm(1000)
tr <- as.integer(x >= 0)
rd <- rd_est(y ~ x + tr | cov, cutpoint = 0, t.design = "geq") 
predict(rd)
#>              X cf            X3           X2          X1 Tr      cov_gm
#> 25 -0.99772683  0 -9.931960e-01 0.9954588212 -0.99772683  0 -0.01679203
#> 24 -0.95707948  0 -8.766859e-01 0.9160011345 -0.95707948  0 -0.01679203
#> 23 -0.91643214  0 -7.696636e-01 0.8398478612 -0.91643214  0 -0.01679203
#> 22 -0.87578479  0 -6.717261e-01 0.7669990012 -0.87578479  0 -0.01679203
#> 21 -0.83513745  0 -5.824704e-01 0.6974545546 -0.83513745  0 -0.01679203
#> 20 -0.79449010  0 -5.014937e-01 0.6312145213 -0.79449010  0 -0.01679203
#> 19 -0.75384276  0 -4.283929e-01 0.5682789013 -0.75384276  0 -0.01679203
#> 18 -0.71319541  0 -3.627652e-01 0.5086476946 -0.71319541  0 -0.01679203
#> 17 -0.67254807  0 -3.042075e-01 0.4523209012 -0.67254807  0 -0.01679203
#> 16 -0.63190072  0 -2.523170e-01 0.3992985212 -0.63190072  0 -0.01679203
#> 15 -0.59125338  0 -2.066907e-01 0.3495805545 -0.59125338  0 -0.01679203
#> 14 -0.55060603  0 -1.669256e-01 0.3031670012 -0.55060603  0 -0.01679203
#> 13 -0.50995869  0 -1.326188e-01 0.2600578611 -0.50995869  0 -0.01679203
#> 12 -0.46931134  0 -1.033673e-01 0.2202531344 -0.46931134  0 -0.01679203
#> 11 -0.42866400  0 -7.876822e-02 0.1837528211 -0.42866400  0 -0.01679203
#> 10 -0.38801665  0 -5.841859e-02 0.1505569210 -0.38801665  0 -0.01679203
#> 9  -0.34736931  0 -4.191547e-02 0.1206654343 -0.34736931  0 -0.01679203
#> 8  -0.30672196  0 -2.885590e-02 0.0940783609 -0.30672196  0 -0.01679203
#> 7  -0.26607462  0 -1.883694e-02 0.0707957008 -0.26607462  0 -0.01679203
#> 6  -0.22542727  0 -1.145564e-02 0.0508174541 -0.22542727  0 -0.01679203
#> 5  -0.18477992  0 -6.309056e-03 0.0341436207 -0.18477992  0 -0.01679203
#> 4  -0.14413258  0 -2.994239e-03 0.0207742006 -0.14413258  0 -0.01679203
#> 3  -0.10348523  0 -1.108243e-03 0.0107091938 -0.10348523  0 -0.01679203
#> 2  -0.06283789  0 -2.481217e-04 0.0039486004 -0.06283789  0 -0.01679203
#> 1  -0.02219054  0 -1.092707e-05 0.0004924203 -0.02219054  0 -0.01679203
#> 26  0.00000000  0  0.000000e+00 0.0000000000  0.00000000  1 -0.01679203
#> 27  0.00000000  1  0.000000e+00 0.0000000000  0.00000000  0 -0.01679203
#> 28  0.01845680  0  6.287374e-06 0.0003406535  0.01845680  1 -0.01679203
#> 29  0.05910415  0  2.064685e-04 0.0034933000  0.05910415  1 -0.01679203
#> 30  0.09975149  0  9.925632e-04 0.0099503599  0.09975149  1 -0.01679203
#> 31  0.14039884  0  2.767518e-03 0.0197118331  0.14039884  1 -0.01679203
#> 32  0.18104618  0  5.934281e-03 0.0327777197  0.18104618  1 -0.01679203
#> 33  0.22169353  0  1.089580e-02 0.0491480195  0.22169353  1 -0.01679203
#> 34  0.26234087  0  1.805502e-02 0.0688227327  0.26234087  1 -0.01679203
#> 35  0.30298822  0  2.781488e-02 0.0918018592  0.30298822  1 -0.01679203
#> 36  0.34363556  0  4.057834e-02 0.1180853991  0.34363556  1 -0.01679203
#> 37  0.38428291  0  5.674835e-02 0.1476733522  0.38428291  1 -0.01679203
#> 38  0.42493025  0  7.672784e-02 0.1805657187  0.42493025  1 -0.01679203
#> 39  0.46557760  0  1.009198e-01 0.2167624986  0.46557760  1 -0.01679203
#> 40  0.50622494  0  1.297271e-01 0.2562636917  0.50622494  1 -0.01679203
#> 41  0.54687229  0  1.635527e-01 0.2990692982  0.54687229  1 -0.01679203
#> 42  0.58751963  0  2.027996e-01 0.3451793180  0.58751963  1 -0.01679203
#> 43  0.62816698  0  2.478708e-01 0.3945937511  0.62816698  1 -0.01679203
#> 44  0.66881432  0  2.991691e-01 0.4473125976  0.66881432  1 -0.01679203
#> 45  0.70946167  0  3.570975e-01 0.5033358574  0.70946167  1 -0.01679203
#> 46  0.75010901  0  4.220590e-01 0.5626635305  0.75010901  1 -0.01679203
#> 47  0.79075636  0  4.944565e-01 0.6252956169  0.79075636  1 -0.01679203
#> 48  0.83140370  0  5.746929e-01 0.6912321167  0.83140370  1 -0.01679203
#> 49  0.87205105  0  6.631713e-01 0.7604730298  0.87205105  1 -0.01679203
#> 50  0.91269839  0  7.602945e-01 0.8330183562  0.91269839  1 -0.01679203
#> 51  0.95334574  0  8.664655e-01 0.9088680960  0.95334574  1 -0.01679203
#> 52  0.99399308  0  9.820873e-01 0.9880222491  0.99399308  1 -0.01679203
#>     YSE.cubic YSE.quadratic YSE.linear Yhat.cubic Yhat.quadratic Yhat.linear
#> 25 0.17416908    0.13398618 0.09167682   1.015801       1.112584    1.073478
#> 24 0.12850196    0.11381610 0.08612158   1.121579       1.173441    1.143670
#> 23 0.09844111    0.09661877 0.08070078   1.218704       1.235103    1.213862
#> 22 0.08353826    0.08269693 0.07544342   1.308024       1.297570    1.284054
#> 21 0.07986165    0.07233497 0.07038611   1.390385       1.360841    1.354246
#> 20 0.08122769    0.06563201 0.06557517   1.466632       1.424916    1.424439
#> 19 0.08302387    0.06229215 0.06106885   1.537612       1.489796    1.494631
#> 18 0.08316722    0.06156874 0.05693951   1.604170       1.555481    1.564823
#> 17 0.08122090    0.06247466 0.05327490   1.667153       1.621970    1.635015
#> 16 0.07763346    0.06407787 0.05017694   1.727407       1.689264    1.705207
#> 15 0.07334223    0.06566691 0.04775603   1.785777       1.757362    1.775399
#> 14 0.06952558    0.06677252 0.04611891   1.843110       1.826265    1.845591
#> 13 0.06730361    0.06713008 0.04535055   1.900252       1.895973    1.915783
#> 12 0.06732017    0.06664226 0.04549499   1.958050       1.966485    1.985975
#> 11 0.06941922    0.06536382 0.04654372   2.017348       2.037801    2.056167
#> 10 0.07272509    0.06351385 0.04843806   2.078993       2.109922    2.126359
#> 9  0.07605454    0.06151419 0.05108400   2.143831       2.182848    2.196551
#> 8  0.07833192    0.06003889 0.05437195   2.212709       2.256578    2.266743
#> 7  0.07890125    0.06002106 0.05819316   2.286472       2.331113    2.336935
#> 6  0.07789050    0.06251631 0.06244985   2.365966       2.406452    2.407127
#> 5  0.07685918    0.06838776 0.06705912   2.452037       2.482596    2.477319
#> 4  0.07965893    0.07802223 0.07195325   2.545532       2.559545    2.547511
#> 3  0.09203623    0.09134223 0.07707799   2.647297       2.637298    2.617703
#> 2  0.11840182    0.10803830 0.08239034   2.758177       2.715855    2.687895
#> 1  0.15984322    0.12777279 0.08785625   2.879018       2.795217    2.758087
#> 26 0.16233459    0.12626679 0.08540881  12.778858      12.907275   12.845227
#> 27 0.18868765    0.13972582 0.09089516   2.949496       2.838883    2.796407
#> 28 0.14150689    0.11727601 0.08300772  12.839859      12.939539   12.884273
#> 29 0.10587849    0.09940024 0.07780958  12.965565      13.011506   12.970265
#> 30 0.08444523    0.08438713 0.07275651  13.080328      13.084727   13.056257
#> 31 0.07542125    0.07252922 0.06788092  13.185297      13.159203   13.142248
#> 32 0.07401614    0.06406224 0.06322387  13.281619      13.234934   13.228240
#> 33 0.07509602    0.05897849 0.05883728  13.370442      13.311920   13.314232
#> 34 0.07561047    0.05685034 0.05478617  13.452912      13.390160   13.400223
#> 35 0.07446553    0.05686506 0.05115029  13.530176      13.469654   13.486215
#> 36 0.07172715    0.05808460 0.04802406  13.603383      13.550404   13.572206
#> 37 0.06810465    0.05969945 0.04551261  13.673680      13.632408   13.658198
#> 38 0.06465725    0.06113036 0.04372202  13.742213      13.715667   13.744190
#> 39 0.06251030    0.06201900 0.04274298  13.810130      13.800180   13.830181
#> 40 0.06245239    0.06218799 0.04263143  13.878579      13.885948   13.916173
#> 41 0.06454849    0.06161228 0.04339408  13.948706      13.972971   14.002165
#> 42 0.06810414    0.06041432 0.04498647  14.021660      14.061248   14.088156
#> 43 0.07201484    0.05888397 0.04732492  14.098587      14.150780   14.174148
#> 44 0.07517400    0.05751574 0.05030551  14.180634      14.241567   14.260140
#> 45 0.07675601    0.05703479 0.05382165  14.268949      14.333609   14.346131
#> 46 0.07646864    0.05834444 0.05777565  14.364680      14.426905   14.432123
#> 47 0.07498109    0.06232641 0.06208390  14.468973      14.521455   14.518114
#> 48 0.07469396    0.06956191 0.06667778  14.582976      14.617261   14.604106
#> 49 0.08035382    0.08020255 0.07150224  14.707836      14.714321   14.690098
#> 50 0.09746014    0.09408538 0.07651369  14.844700      14.812636   14.776089
#> 51 0.12884482    0.11093046 0.08167772  14.994716      14.912205   14.862081
#> 52 0.17457891    0.13046847 0.08696714  15.159032      15.013029   14.948073
#>    Yhat.optimal YSE.optimal Yhat.half   YSE.half Yhat.double YSE.double
#> 25           NA          NA        NA         NA    1.079883 0.06752836
#> 24           NA          NA        NA         NA    1.148718 0.06325819
#> 23           NA          NA        NA         NA    1.218903 0.05924453
#> 22           NA          NA        NA         NA    1.289057 0.05561235
#> 21           NA          NA        NA         NA    1.358828 0.05219664
#> 20     1.433212  0.05351443        NA         NA    1.428069 0.04912911
#> 19     1.502391  0.05018178        NA         NA    1.498024 0.04606496
#> 18     1.570578  0.04756590        NA         NA    1.567430 0.04350838
#> 17     1.637510  0.04540605        NA         NA    1.636231 0.04122609
#> 16     1.705687  0.04352574        NA         NA    1.705562 0.03972614
#> 15     1.774605  0.04185812        NA         NA    1.775195 0.03863884
#> 14     1.844355  0.04075105        NA         NA    1.845160 0.03801955
#> 13     1.913633  0.04016291        NA         NA    1.914923 0.03792424
#> 12     1.983118  0.03986409        NA         NA    1.984763 0.03838954
#> 11     2.051582  0.03982443        NA         NA    2.054181 0.03946229
#> 10     2.119627  0.04039372  2.108404 0.04862173    2.123420 0.04112820
#> 9      2.188668  0.04133364  2.174698 0.04794918    2.193080 0.04336685
#> 8      2.258892  0.04289745  2.244873 0.04835162    2.263251 0.04616949
#> 7      2.331200  0.04494031  2.322093 0.04931989    2.334335 0.04948909
#> 6      2.403885  0.04734331  2.399653 0.05173447    2.405549 0.05328389
#> 5      2.475562  0.05068397  2.474337 0.05550261    2.476216 0.05755586
#> 4      2.546171  0.05534967  2.547828 0.06010072    2.546253 0.06226192
#> 3      2.619887  0.06166732  2.633510 0.06810471    2.617487 0.06744207
#> 2      2.700694  0.06929119  2.740723 0.08194842    2.690569 0.07316427
#> 1      2.784650  0.07942976  2.863448 0.10107893    2.763901 0.07947455
#> 26    12.874758  0.07846905 12.820108 0.10104606   12.855436 0.07770452
#> 27     2.828083  0.08606018  2.924380 0.11587315    2.802977 0.08320053
#> 28    12.911195  0.07375349 12.863912 0.08996432   12.893707 0.07492860
#> 29    12.997552  0.06515337 12.971149 0.07425638   12.979631 0.06931166
#> 30    13.083186  0.05868914 13.073155 0.06461790   13.065530 0.06420810
#> 31    13.167395  0.05331197 13.171508 0.05764257   13.151580 0.05951202
#> 32    13.247994  0.04945917 13.258300 0.05231195   13.236106 0.05518741
#> 33    13.327042  0.04653024 13.336121 0.04917102   13.319554 0.05124713
#> 34    13.409052  0.04399498 13.418018 0.04730486   13.404088 0.04771811
#> 35    13.492550  0.04215822 13.500467 0.04640453   13.489132 0.04463287
#> 36    13.575605  0.04064254 13.579614 0.04602288   13.573898 0.04201536
#> 37    13.659063  0.03975913 13.658999 0.04602422   13.658790 0.03991440
#> 38    13.741770  0.03900395        NA         NA   13.743332 0.03838355
#> 39    13.824751  0.03908117        NA         NA   13.827986 0.03745209
#> 40    13.908491  0.03964597        NA         NA   13.912962 0.03712527
#> 41    13.992177  0.04055230        NA         NA   13.997924 0.03738596
#> 42    14.076941  0.04163177        NA         NA   14.083345 0.03819651
#> 43    14.162403  0.04347484        NA         NA   14.169068 0.03949880
#> 44    14.248791  0.04554372        NA         NA   14.255182 0.04120871
#> 45    14.337097  0.04804828        NA         NA   14.342108 0.04383194
#> 46    14.427110  0.05108708        NA         NA   14.429727 0.04660551
#> 47    14.518724  0.05454876        NA         NA   14.517934 0.04970498
#> 48           NA          NA        NA         NA   14.605350 0.05310234
#> 49           NA          NA        NA         NA   14.692974 0.05669884
#> 50           NA          NA        NA         NA   14.782527 0.06068324
#> 51           NA          NA        NA         NA   14.870923 0.06471625
#> 52           NA          NA        NA         NA   14.958527 0.06941019